APAC CIOOutlook

Advertise

with us

  • Technologies
      • Artificial Intelligence
      • Big Data
      • Blockchain
      • Cloud
      • Digital Transformation
      • Internet of Things
      • Low Code No Code
      • MarTech
      • Mobile Application
      • Security
      • Software Testing
      • Wireless
  • Industries
      • E-Commerce
      • Education
      • Logistics
      • Retail
      • Supply Chain
      • Travel and Hospitality
  • Platforms
      • Microsoft
      • Salesforce
      • SAP
  • Solutions
      • Business Intelligence
      • Cognitive
      • Contact Center
      • CRM
      • Cyber Security
      • Data Center
      • Gamification
      • Procurement
      • Smart City
      • Workflow
  • Home
  • CXO Insights
  • CIO Views
  • Vendors
  • News
  • Conferences
  • Whitepapers
  • Newsletter
  • Awards
Apac
  • Artificial Intelligence

    Big Data

    Blockchain

    Cloud

    Digital Transformation

    Internet of Things

    Low Code No Code

    MarTech

    Mobile Application

    Security

    Software Testing

    Wireless

  • E-Commerce

    Education

    Logistics

    Retail

    Supply Chain

    Travel and Hospitality

  • Microsoft

    Salesforce

    SAP

  • Business Intelligence

    Cognitive

    Contact Center

    CRM

    Cyber Security

    Data Center

    Gamification

    Procurement

    Smart City

    Workflow

Menu
    • AI Healthcare
    • Cyber Security
    • Hotel Management
    • Workflow
    • E-Commerce
    • Business Intelligence
    • MORE
    #

    Apac CIOOutlook Weekly Brief

    ×

    Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Apac CIOOutlook

    Subscribe

    loading

    THANK YOU FOR SUBSCRIBING

    • Home
    Editor's Pick (1 - 4 of 8)
    left
    Mastering Technology Selection for Competitive Advantage

    Rob Meilen, VP & CIO, Hunter Douglas

    Healthcare IT solution Delivery and the Cloud

    Arvind N Sivaramakrishnan, CIO, Apollo Hospitals

    AI-Driven Intelligent Maintenance Trends in the Industrial Space

    ChengzhiZong, Vice President of Artificial Intelligence, RONDS

    Riding the Wave of Digital Transformation for MSME’s

    SharlizaBintiMohdHaris, Head, SME Value Propositions, Solutions and Campaigns, unifi Business, Telekom Malaysia

    Will the Rise of AI make us Human Doctors an Endangered Species, or be the Next Phase of Our Evolution?

    Professor Erwin Loh, Group Chief Medical Officer, St Vincent’s Health Australia

    Using AI to Empower Clinicians, Patients, and Healthcare Organizations

    Dr. Yau Teng Yan, Chief Medical Officer, Holmusk

    Hong Kong Science Park as an AI Hub

    Dr Crystal Fok, Associate Director, MPE Cluster & Robotics Platform, Hong Kong Science and Technology Parks Corporation

    E - Health - Unlocking the Pathway to Preventative Healthcare

    Sashidhar Thothadri, Vice President Asia, Mobile Connectivity Solutions & Analytics & IoT Solutions, Thales

    right

    Artificial Intelligence-Journey towards the Center of the Enterprise

    Raman Mehta, SVP & CIO, Fabrinet [NYSE: FN]

    Tweet
    content-image

    Raman Mehta, SVP & CIO, Fabrinet [NYSE: FN]

    Marc Andreessen had famously said software is eating the world. He probably had Artificial Intelligence (AI) in the back of his mind. In its simplistic form, AI enables a machine to perform human-like tasks, such as image, voice & text recognition, natural language processing and understanding human-like perception. The journey of AI from Expert Systems in the early eighties to Heuristics analysis, machine learning and finally to present day deep learning has been a roller coaster ride. Just a few years back, people thought neural networks were something academicians talked in their leisure time. This change, where AI is becoming more and more mainstream and affordable, has come about with the convergence of big data, availability of parallel processing advancements such as GPUs on public clouds and breakthroughs in machine learning.

    Machine learning is a set of algorithms that enable a computer program to recognize patterns in data sets and interpret those patterns to provide meaningful insights. Machine learning can be supervised or unsupervised. In the supervised learning, you are training machine learning task for every input with corresponding target output. In supervised learning, machine is trained with labeled data and looks at data with specific parameters. Human input and bias are an ingredient of the supervised learning making it more expensive and limited in use.

    In the unsupervised learning, the information is classified without the help of trainers or instructors. The machine finds structure or relationships among different inputs. One example of unsupervised learning is clustering where new input data is automatically put into an appropriate cluster. The affordable processing power and storage coupled with explosion of Big Data from multitude of sources–such as text, images, and connected devices–is making it easier for machines to train and learn in the unsupervised mode.

    Unsupervised learning is a precursor to deep learning where most of the benefits for an enterprise will be realized using AI. Deep learning systems can learn from iterative data computations.

    ​AI can enable better outcomes by eliminating human error and faster decision making that is adaptable to changing business conditions by simply tweaking an algorithm

    They just don’t follow explicitly programmed instructions. Deep learning algorithms get more intelligent and context aware with use and experience, making them a key enabler of artificial intelligence platforms.

    AI in the form of Facebook targeted content feed, Google AlphaGo, and smart assistant like Alexa have grabbed our attention. The enterprise inflection point would be when AI is incorporated into strategic business applications or business domains. This will help to raise employee productivity, improve and automate business processes, detect fraud, build smarter factories and connected vehicles, make better recommendations, anticipate customer sentiment, and even address cyber security. The digitally transformed businesses would be “algorithm driven business” that would use machine learning to drive process automation and improve decision making. These will be the businesses that would reap the benefits of modern day “gold rush” where deep understanding of their data paves the way for innovative business models, products, and services.

    There are major enterprise software providers that are already working on bringing AI into their core applications. They already have the advantage of having vast amount of digital data and interactions in the form of consumer profiles, transactions, and business outcomes. Once the data is anonymized; they can make current applications AI adaptive by continually capturing and learning from new data and tapping transactional and behavioral history.

    One example is in the HR arena in finding the right talent match for open positions. The talent management solution, driven with natural language processing and understanding and predictive language analysis, will help speed up recruitment by allowing you to focus on just not on keywords but the general sentiment of the resume and social media profiles. The whole recruitment process can be done with fewer mistakes and be more equitable, accountable and compliant.

    Another enterprise application of AI is processing the enormous volume of data and information flows generated by the new generation of connected IoT networks. Because machine learning algorithms get smarter as they are exposed to more data, these deep learning platforms are key to finding insights in the data flows generated by Industrial IoT networks. Machine learning systems can detect the anomalies or patterns outside the norm and create self-healing behavior or alert a human for corrective action.

    Augmented Reality is another area that is fueled by the advancement in AI where the way we interact with everything will be rewritten and new business models will be created.

    The Tesla Autopilot enabled automobiles are collecting data from millions of miles driven by their drivers in real life situations. These videos and data are fed to a deep learning engine on the cloud to create a terminology of autonomous driving. As per Elon Musk, the whole Tesla fleet operates as a network. When one car learns something, they all learn it. The same model can be applied to enterprise software. The algorithms can be continuously enhanced and made to reflect on edge devices by constant over the air upgrades. They can help in building conversational interfaces into any applications using voice and text and create highly engaging user experience by constantly learning from the network.

    For an enterprise, AI can enable better outcomes by eliminating human error and faster decision making that is adaptable to changing business conditions by simply tweaking an algorithm.

    Check out: Top Artificial Intelligence Solution Companies
    tag

    Machine Learning

    Big Data

    IoT

    HR

    Industrial IoT

    Weekly Brief

    loading
    Top 10 AI Powered Healthcare Companies - 2019
    ON THE DECK

    AI Healthcare 2019

    I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

    Read Also

    Artificial Intelligence - Myths And Truths

    Artificial Intelligence - Myths And Truths

    Geraldo Pereira Junior, Chief Information Officer, Ypê
    Sustainable Future through Innovative Technology Solutions

    Sustainable Future through Innovative Technology Solutions

    Faisal Parvez, Director, BT Business CIO
    The Future Relies on Augmented AI

    The Future Relies on Augmented AI

    Laurent Fresnel, CIO, The Star Entertainment Group
    Digitalization with the use of digital technologies/Improving business through digital technologies

    Digitalization with the use of digital technologies/Improving business through digital technologies

    Wilbertus Darmadi, CIO, Toyota Astra Motor
    How Marco's Pizza Leaned On Technology To Succeed Amid The Pandemic By Quickly Pivoting To Contact-Free Delivery And Curbside Carryout

    How Marco's Pizza Leaned On Technology To Succeed Amid The Pandemic By Quickly Pivoting To Contact-Free Delivery And Curbside Carryout

    Rick Stanbridge, VP & Chief Information Officer, Marco’s Pizza
    Bunnings  Diy Digital Transformation

    Bunnings Diy Digital Transformation

    Leah Balter, Chief Information Officer, Bunnings
    For a Smarter City: Trust the Data, Ignore the Hype

    For a Smarter City: Trust the Data, Ignore the Hype

    Brad Dunkle, Deputy CIO, City of Charlotte
    Smart Community Innovation for the Post Pandemic

    Smart Community Innovation for the Post Pandemic

    Harry Meier, Deputy Cio for Innovation, Department of Innovation and Technology, City of Mesa
    Loading...
    Copyright © 2025 APAC CIOOutlook. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy and Anti Spam Policy 

    Home |  CXO Insights |   Whitepapers |   Subscribe |   Conferences |   Sitemaps |   About us |   Advertise with us |   Editorial Policy |   Feedback Policy |  

    follow on linkedinfollow on twitter follow on rss
    This content is copyright protected

    However, if you would like to share the information in this article, you may use the link below:

    https://ai-healthcare.apacciooutlook.com/ciospeaks/artificial-intelligencejourney-towards-the-center-of-the-enterprise-nwid-4411.html